中央农村工作会议系列解读⑤强化种业企业创新能力 切实推进种业振兴行动******
作者:林青宁、毛世平、王晓君,中国农业科学院农业经济与发展研究所
近期,习近平总书记在中央农村工作会议上强调“要抓住耕地和种子两个要害”“把种业振兴行动切实抓出成效,把当家品种牢牢攥在自己手里”。作物育种和种子产业发展对于保障我国粮食安全和农业可持续发展意义重大。科技创新是突破前沿育种关键技术,培育战略性新品种的源头,对我国种业发展至关重要。当前,以市场化为导向的育种模式已是种业创新大势所趋,然而我国种业企业科研创新能力相对较弱,严重制约了我国种业创新链的延长。亟须强化种业企业创新能力,切实推进种业振兴行动。
近年来,我国种业企业在技术创新方面取得了一定进步,表现在三个方面:一是生物育种企业创新平台建设已较为完善。当前国内典型种业企业普遍拥有国家级、省部级重点实验室、博士后工作站等具有行业影响力的技术创新平台,具有较强的技术开发和创新能力。且隆平高科等种业企业已具备了较完善的国外研发体系布局。二是典型生物育种企业科企合作模式初步形成。当前国内典型种业企业不仅与高等院校、科研院所建立了产学研合作关系,还与各类学会建立了长期深入的合作。且首农集团等企业与国外机构在生物技术育种等方面建立了稳定的合作关系。三是典型种业企业创新产出逐渐丰富,在市场准入(审定、登记)品种、发明专利、科技进步奖等方面取得明显进步。“十三五”以来,隆平高科、登海种业等种业企业不断培育出双抗绿色高产的动植物品种。
当然,在成绩的背后,我国种业企业创新发展仍面临诸多难题:一是知识产权保护体系不完善。种业创新知识产权保护存在制度、认知和执行层面的问题,导致品种侵权行为仍较为普遍。二是种业品种同质化严重。新《种子法》实施以来,市场新品种“井喷”,但突破性品种缺乏,种子供给低价竞争,影响企业研发投入。三是种业项目偏离产业化应用。当前项目申报管理基本由科研人员出题并答题,产业需求导向不足。企业在科技论文等方面的劣势,影响了项目申报的成功率。四是科企合作形胜于质。目前科企合作多是联合申请项目,一旦项目结束合作关系就解体,两者为松散型合作。人才合作也多局限在简单的技术指导层面。五是科研院所与企业存在“同质竞争”。目前科研院所种业创新也偏向于生物育种,打破了原有科研院所基础研究、企业应用研究的平衡,挤压了种业企业的利润空间。
针对当前制约种业企业创新发展的系列问题,必须进一步优环境、活机制,提高种业企业创新动力与效能。
一是构建知识产权利益分享机制,完善知识产权保护体系。构建知识产权参与分配的利益机制,建立原始品种权人和实质性派生品种权人的利益分享机制。完善知识产权保护的政策体系,加强知识产权保护平台建设,推动知识产权社会共治,打通知识产权保护通道,培育知识产权保护的良好环境。
二是优化品种审定制度,推动品种由“多乱杂”向“多专优”转变。完善现行主要农作物品种审定制度,提高审定门槛,适当提高现行审定指标标准,减少品种数量,提高品种质量,使真正有实力品种脱颖而出,提高企业创新的内在动力。加快建立分作物分子指纹库,严格和规范品种审定和登记“特异性、一致性、稳定性”测试,通过技术手段把牢品种准入关。强化品种标准样品管理,开展品种符合性验证试验,为强化品种事中事后监管提供有力支撑。
三是加强种业科技项目产业化属性,增加种业企业经费支持。增加种业专项科技创新项目数量,增加种业企业获取科研经费支持的渠道,保障有实力的种业企业能够获得相应的科研项目以及研发经费支持。对种业企业融资方面给予支持,对产业化发展企业实施低息支持,尤其企业用于科技创新研发、基地建设方面的投资可给予无息支持。
四是引导科企合作深度融合,促进联盟运行由虚转实。创新项目形成机制,由企业根据产业需求提出技术难题,政府组织监督在全国范围内进行项目招标,构建企业“出榜”“评榜”+政府“发榜”+科研院校“揭榜”的机制。建立共建共享机制,完善联盟成员间的利益联结和分配机制,促进产学研协同创新效率。积极推动联盟实体化,适合以股份合资的方式实现实体化的要加快引导,适合以协会等社会团体法人方式实现资源整合的要给予政策支持。
五是强化科研院所生物育种基础研究属性,完善生物种业科研成果共享机制。多措并举强化科研院所做好种质资源的收集、分析、挖掘工作,进行基础性、前沿性、公益性研究,并完善科研成果信息共享机制,在合法合规的前提下,鼓励科研院所向社会公众公布科研成果和相关的知识产权信息,将生物种业科研成果转让给典型种业企业进行新品种培育,实现科研成果的开放共享。
人工智能如何做到可信、可用?专家热议:把责任归结到个人******
中新网北京12月11日电 人工智能治理的理想状态,是人工智能技术能做到可知、可信、可控、可用。而在现实中,人工智能技术手段虽然非常强大,但是离完美、完善仍有相当的距离。从技术角度和技术应用角度,人工智能的发展如何做到扬长避短?
近日,在2022人工智能合作与治理国际论坛上,专家围绕该话题进行了讨论。
中国工程院院士、鹏城实验室主任高文认为,现阶段很多技术还处于发展的过程中,如果过早地说这个不能用、那个不能用,可能会抑制技术本身的发展。但反过来,如果什么都不管,也不行。
“因此,现在更多还是从道德层面多进行引导。同时,做技术的人,也要尽量把一些可能的风险、抑制工具,即约束风险的工具,尽快想明白。自己也做,同时号召大家做,两者结合。”他说。
清华大学智能产业研究院国强教授、首席研究员聂再清认为,我们要保证能够创新,但同时不能让创新对我们的生活产生破坏性的影响,最好的办法就是把责任归结到个人。
“技术的背后是有人在控制的。这个人应该时刻保证工具或创新在危险可控的范围内。同时,社会也要进行集体的监督,发布某个产品或技术,要能够召回、撤销。在创新和监管之间,当然是需要平衡的,但归根结底,还是要把责任落实到个人身上。”他指出。
瑞莱智慧RealAI公司联合创始人、首席执行官田天补充道,在技术可解释性方面,需要去进行技术发展与相应应用场景的深度结合。大家需要一个更加可解释的AI模型,或者更加可解释的AI应用。
“但我们真正想落地的时候,会发现每个人想要的可解释性完全不一样。比如:模型层面的可解释,可能从研发人员角度觉得已经很好了,但是从用户的角度是看不懂的,这需要一些案例级的解释,甚至通过替代模型等方式进行解释。因此,在不同领域,需要不同的可解释能力,以及不同的可解释级别,这样才能让技术在应用场景发挥最好的作用。”他说。
将伦理准则嵌入到人工智能产品与系统研发设计中,现在是不是时候?
高文认为,人工智能软件、系统应该有召回的功能。如果社会或伦理委员会发现这样做不对,可能带来危害,要么召回,要么撤销。
高文说,应用的开发者,系统提交或者最终用户让他去调整的时候,他应该有责任。如果开发者发现已经踩线了,应该给他一个保护机制,他可以拒绝后面的支持和维护,甚至可以起诉。“不能只说哪一方不行,光说是开发者的责任,他可能觉得冤枉,因为他只提供工具,但有时候是有责任的,只是说责任怎么界定。”
“在人工智能的发展过程中,一方面要建立一些红线。”田天建议,比如,对于人工智能的直接滥用,造假、个人隐私泄露,甚至关联到国家安全、生命安全的,这些领域一定要建立相关红线,相应的惩罚规定一定要非常清晰,这是保证人工智能不触犯人类利益的基本保障。
“在这个基础上,对于处于模糊地带的,希望能留有更多空间。不光是从限制角度,也可以从鼓励更加重视伦理的角度,促进合规地发展。”田天称。
2022人工智能合作与治理国际论坛由清华大学主办,清华大学人工智能国际治理研究院(I-AIIG)承办,中国新闻网作为战略合作伙伴,联合国开发计划署(UNDP)、联合国教科文组织(UNESCO)等国际组织、国内外学术机构支持。(中新财经)
(文图:赵筱尘 巫邓炎) [责编:天天中] 阅读剩余全文() |